From a quantum control perspective (e.g. PRX 6, 041067), control of cold atoms with light becomes easier when optical pulses are shapeable arbitrarily. The waveform bandwidth is limited by the modulator and seed light. Regular modulators (flip mirrors, AOM, EOM) support waveforms up to tens of MHz. Tailoring spectro-phases of mode-locked lasers leads to THz-resolution pulses. To fill the 100MHz-THz gap is still an outstanding challenge today for the advance of new quantum optical technology.
This project intends to develop novel laser modulation techniques for filling the technical gap and to enable ultra-precise dipole and Raman controls in atoms and molecules.
We use both continuous wave (CW) and mode-locked (ML) lasers.
At CW side, we push the boundary of applications using integrated Electro-optical modulators (fEOM) for controlling light with up to Watt-level peak power. We develop new ways to faithfully transfer microwave modulation to light and to amplify weak light pulses with semiconductor amplifiers. We invent new methods to coherently modulate light into multiple programmable sidebands, using acoustic-optical modulation (AOM).
At ML side, we invent methods to coherently generate multiple optical delays with multi-frequency AOM diffraction. Seeded by a picosesecond laser, the method allows arbitrary sequence generation in a way to fit the composite applictions as those NMR, but for strong transition control in atoms and molecules. We also invent new ways to coherently pre-scale and multiply the ML repetition rates and for coherent pulse stacking. Our goal along the line is to eventually build a coherent AOM network, for generating artibray pulse sequence, with each pulse individually shaped, for AMO applications with ML at ``very high'' repetition rates.
This project benefits from many collaborations, including Kaifeng Zhao group, Mingbiao Ji group, Zhengsheng Tao group, and Yanting Zhao group.
We are looking for new team members at this point. If you are enthusiatic about this project, please contact us for a discussion.
从量子控制的观点可知 (如PRX 6, 041067), 波形任意可控的光脉冲会让冷原子操控变得更加简单。波形带宽由光调制器带宽及输入光带宽共同决定。常规光调制器(机械翻转镜,声光调制器,电光调制器)可支持最高达数十兆赫兹的波形调制。另一方面,对锁模激光的光谱相位调节可产生太赫兹分辨率的任意波形脉冲。 然而100兆赫兹到太赫兹区间的波形调控仍是当前技术空白,其填补是当前新型量子光学技术发展的突出挑战。
本项目试图发展新的激光调制技术来填补这一技术空缺,并实现原子、分子的高精度电偶极与拉曼量子控制。
我们同时使用连续光与锁模激光技术来推进这个目标的实现。
对于连续光, 我们发展集成电光调制 (fEOM)技术的极限应用,对瓦级峰值功率的近红外注入光实现10GHz级的任意波形调控。我们发展了微波波形-光波形精确转换技术,并运用半导体放大器实现弱信号光脉冲的精确放大。我们发明了基于相干声光调制 (AOM)的多边带产生方法.
对于锁模激光,我们发明了基于多频声光调制驱动多路光延迟的时域脉冲光整形技术。以皮秒激光注入,该方法可实现任意序列多皮秒脉冲单模输出,满足类似于NMR组合脉冲调控的原子分子强跃迁控制。我们还发明了新型锁模激光重频控制及脉冲相干累加方案。沿着这些研究思路,我们的最终目标是构建一个相干声光调制网络,用来产生强度和相位可控的任意脉冲序列,在非常高重频下拓展锁模激光的原子分子光学物理应用。
本项目受益于很多科研合作,包括赵凯峰实验室, 季敏标实验室, 陶镇生实验室, 和赵延霆实验室。
目前这个方面招收新成员。如果你对我们的项目感兴趣,请联系我们。
Tel.: 021-31242239
All content © FUDAN. All Rights Reserved.