

Composite picosecond control of atomic state through a nanofiber interface

Yudi Ma^{*,1}, Ruijuan Liu¹, Liyang Qiu¹, Lingjing Ji¹, Yiming Li¹, Yanting Zhao^{*, 2}, Wei Fang^{*,3}, Saijun Wu^{*,1} ¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China ² State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, People's Republic of China ³ Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, People's Republic of China

Introduction

- Nanophotonic interfaces: strong interaction between confined photons and nearby atoms.
- We propose to achieve high precision nanophotonic control of atomic states by composite control schemes with arrays of picosecond pulses.
- This work: A proof-of-concept by controlling a strong transition of roomtemperature atoms at a nanofiber interface.

Composite control with a three-pulse seq.

Experimental Setup

- State-of-art atom-nanofiber interface. (L.Tong, Opt. Express, 12, 1025(2004), D.Su, New J. Phys. 21, 043053(2019)).
- Novel picosecond pulse shaping scheme for strong transition control [1].
- Composite picosecond D1 pulses to control transmission at D2.
- Controlling atoms at 300 m/s across the sub-micron evanescent field.
- Polarized control by ellipticity distribution $\varepsilon(\mathbf{r})$.

ne pulse benchmark

- We apply a phase-coherent N=3 pulse sequence to control the atoms in the evanescent field. Figs. (j-n) show the experimental measured $\overline{\delta T}$ at different incident polarization and power (associated Ω_i).
- The experimental observations are corroborated with a full-level simulation (Figs. (e-i)).
- The broken sign symmetry in Fig.(i)(n) is associated with substantial $|g\rangle \leftrightarrow |d\rangle$ Raman transfer, as unveiled by comparing ρ_{gg} - depletion efficiency $f_g(\mathbf{r})$ with expected inversion efficiency $f(\mathbf{r})$ in Fig. (c) according to the full-level simulations.
- Behind the ~70% enhancement to the probe transmission is local population inversion efficiency of >90% (red curve in Fig.(b)) over a 100nm-sized area, well suitable for controlling confined atoms in future work.

Pico-second pulse shaping technique

An overview of the pulse shaping technology for the robust strong transition control. Phase stable, fully programmable

• We use a Monte Carlo simulation to recover the optical response of the moving atoms (red curve in Fig.(b)).

• For N=1 picosecond control pulse, we delay the probe Δt to study the transient optical response of the thermal atoms (Fig. (a)). The result is shown in Fig. (b) with scatter plots. Here δT represents the control induced relative probe transmission, which reflects the D1 population inversion efficiency.

- We scan the control pulse energy \mathcal{E}_1 with linear or circular incident polarization at $\Delta t=0$.
- A optical saturation of δT , which is up to ~45%.
- Polarization-dependent response.

gement & Reference

- Funding: National Key Research Program of China under Grant No. 2016YFA0302000 and No. 2017YFA0304204, National Natural Science Foundation of China under Grant No. 12074083, 61875110, 62105191, 62035013, 62075192.
- [1] Y. Ma, X. Huang, et al, "Precise pulse shaping for quantum control of strong optical transitions", Opt. Express, 28,17171(2020).
- [2] Y. Ma, R. Liu, et al, "Composite picosecond control of atomic state through a nanofiber interface"

Toward larger N

- Expected inversion efficiency $f(\mathbf{r})$ for N=5 picosecond control pulse sequence (red curve >99%).
- 500 -500 x [nm]
- Technical issues: AOM nonlinearity and cross-talk[1].
- · An upgraded pulse shaping system by composite AOM[3].
- High resolution monitor system for the pulse sequence based on wavelength meter etalon signal.

Summary and outlook

- We demonstrate a composite picosecond pulse scheme to achieve errorresilient control of a strong transition within the proximity of an optical nanofiber. A phase-coherent 3-pulse sequence of excitation from a picosecond pulse shaper is found able to efficiently invert the D1 transition of a ⁸⁵Rb vapor across the evanescent field, leading to an enhancement of fiber transmission of a nanosecond D2 probe by up to ~70%.
- Confirmed by a full-level simulation, this composite scheme supports highly efficient optical control of alkaline atoms near a nanofiber. By successively applying two inversions, a precise phase gate can be achieved

to be published, arxiv:2203.06716.

[3] R. Liu, Y. Ma, et al, "Composite acousto-optical modulation", arXiv.2110.15537 (Opt. Express

* ydma18@fudan.edu.cn, wfang08@zju.edu.cn, zhaoyt@sxu.edu.cn, saijunwu@fudan.edu.cn