Toward ultrafast atomic spin control near a nanofiber


A central quest in nanophotonics is for optical confinement to enhance the strength of light-matter interaction. The enhancement impacts spectroscopy, nonlinear optics, and lasering in fundamental ways. Furthermore, by interfacing the confined photons with atoms, single-photon-level nonlinearity may leads to intriguing many-body effects in the confined geometry. This 2nd scenario requires ultra-precise atomic state control in the near field.


This projects intend to develop enabling quantum optical technology at nanophotonic interface. Cooperating with Prof. Wei Fang group at Zhejiang University, and Prof. Yangting Zhao at Shanxi University, we combine state-of-art nanofiber - cold atom interface with our ability to perform quantum control on strong transitions using wide-band optical pulses. Regular intuition suggests atomic state cannot be controlled precisely by the highly inhomogenuous near field coupling. However, our preliminary experimental results already suggest otherwise. The key to perfect the seemingly impossible control is to exploit geometric robustness of strong transitions at picosecond time-scales, with composite techiques.


The ultimate goal of this project is to control the electric dipole spin waves of optical confined 1D lattice at proximity of the nanofiber, with the geometric phase-patterning driven by the fiber-guided optical pulses. The research may enable observation of interesting, infinitely-ranged many-body physics of the 1D lattice gas in a novel state of optical matter. Our device itself may also be developed into a novel single-mode quantum light source.


Experimentally, this is a joint effort mainly by Fudan and Shanxi University, but also with important contribution and support from Zhejiang University.


Theoretically, we closely interact with world-leading experts (Prof. Darrick Chang and Prof. Lius Orozco) for supports.


We are not looking for new team members at this point. However, if you are truly enthusiatic about this project, please contact us for a discussion.



纳米光纤界面的超快原子自旋控制


纳米光子学的一个核心目标是通过对光学模式的空间限制来增强光与物质的相互作用强度。已有工作表明,这种增强可以对光谱学、非线性光学和激光物理产生重大影响。另一方面,结合单原子的单光子级非线性,近场光子与原子相互作用可驱动受限体系在光学波段的多体物理效应。后一种情况需要在近场进行超精确的原子态控制。


本项目旨在开发纳米光子界面的多体量子光学技术。我们与浙江大学方伟教授及山西大学赵延霆教授团队合作,将最先进的纳米光纤-冷原子界面与我们实验室独有的宽带光脉冲强光学跃迁量子控制技术进行结合。按照常规直觉,原子态并不能由均匀性极差的近场光耦合来精确控制。然而,我们的初步实验结果已经表明情况完全可以更好,甚至达到完美控制。此中技术关键是在皮秒时间尺度上充分利用复合脉冲调控来发掘强光学跃迁的几何鲁棒性。


本项目的最终目标是利用纳米光纤导波光脉冲驱动光偶极跃迁的几何相位,对纳米光纤附近一维晶格内的冷原子实现电偶极自旋波控制。这项研究将允许我们产生一种有趣的新型光学物质状态,可用来研究无限长距离相互作用的一维晶格气体多体物理。我们的装置本身也可能发展成为一种新型的单模量子光源。


在实验上,本项目是复旦大学和山西大学的共同努力,也同时得到了浙江大学的重要支持。


在理论上,我们与世界顶尖专家(Darrick Chang教授和Lius Orozco教授)密切互动,并获得支持。


目前本项目没有新团队成员需求。然而如果你对这个项目充满好奇,请联系我们进行讨论。


Tel.: 021-31242239 

All content © FUDAN. All Rights Reserved.